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Gene expression profiling is the

characterization of cells based on the level of

gene activity represented by concentrations

of complementary DNA reverse transcribed

from messenger RNA. The spectrum of

cDNA concentrations, the expression profile,

is determined using a DNA microarray.

Although this approach is valuable for

research, a simpler scheme that would give

answers on a shorter time-scale for clinical

applications is needed. An Adleman DNA

self-assembly computer that would use

cDNA as input might be ideal for clinical

cell discrimination and a neural network

architecture would be appropriate for making

the necessary classifications. Preliminary

experimental results suggest that expression

profiling should be feasible using a DNA

neural network that acts directly on cDNA.

Many people are working to develop

diagnostic techniques for classifying tumor

cells based on gene activity [1–4]. Gene

expression profiling is cell characterization

based on the level of gene activity

represented by the concentrations of

messenger RNA (mRNA). RNA is not

very stable – it is usually converted, by

reverse transcriptase, into a collection of

complementary DNA (cDNA) molecules,

which are more robust. The profile of

active genes represented by their cDNA

concentrations is measured using a DNA

microarray. The cDNA is stained with a

fluorescent dye and allowed to hybridize

with an array of tens of thousands of DNA

oligomers representing many genes. The

array is then exposed to light that excites

the dye. The fluorescent intensities of the

various cDNA oligomers are measured

and compared with the intensities

observed from a library of known cells.

An identification of cell type to assist in

diagnosis is made based on the comparison.

This approach is especially valuable in

the differentiation of pathological strains

that have indistinguishable phenotypes,

which can be essential for determining the

best therapy. However, once the work of

understanding and classifying expression

profiles has been done, a routine application

could use a simpler scheme, for example

involving a much smaller array that would

require less apparatus and that would give

an immediate discrimination amongst a

limited set of possibilities. This suggests that

a diagnosis could possibly use only molecular

beacons [5] or a limited number of probes.

Ever since Adleman’s pioneering

experiment in 1994 [6] it has been clear that,

in principle, molecular-scale computations

can be performed exploiting the self-

assembly of DNA. A DNA computer using

cDNA as input might be ideal for clinical

cell discrimination. In particular, a neural

network version of the Adleman DNA

computing scheme [7] would be appropriate

for making the necessary classifications. In

this article we explore the possibility that

the current paradigm based on microarray

technology could be supplemented by an

apparatus using direct computation at the
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Applications to recombinant

fermentations for β-galactosidase,

glyceraldehyde-3-phosphate

dehydrogenase and streptokinase have

shown significant improvements in

performance, better than even well-mixed

noise-free (ideal) operation. These results

suggest that the non-ideal features of

large bioreactors should be usefully

harnessed rather than being eliminated.
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molecular level, using self-assembly of

artificial DNA oligomers in solution. Here,

I outline the concepts of DNA computing

and present experimental results

indicating that expression profiling should

be feasible using a DNA neural network

acting directly on cDNA.

DNA computation

The field of molecular computing using the

self-assembly of DNA began in 1994 with

Adleman’s in vitro DNA solution of the

directed Hamiltonian path problem [6]:

given a certain number of cities that are

connected only by certain one-way streets,

is there is a way to visit each city once and

only once with a continuous path that

begins and ends at particular preassigned

cities? The amount of time to solve this

problem increases exponentially with the

number of cities – the difficulty increases

as a nonpolynomial (NP) function of its

size. The problem is of such generality that

its solution would imply the solubility of all

problems of its class, including the large

number factoring problem. The directed

Hamiltonian path problem is therefore

dubbed NP-complete, and its solution

would yield a way to solve many important

optimization problems. Adleman, well

known as a co-inventor of the RSA public

key encryption scheme, which is based on

the impracticality of factoring large

numbers, represented the directed paths in

his problem by a liquid solution containing

connected pairs of short single-stranded

DNA oligomers representing seven cities,

as shown in Figure 1. To this he added

complementary oligomer pairs representing

the permitted in-going and out-going gates

of the various city pairs. The oligomers

were allowed to hybridize with each other,

forming random self-assembled chains of

double-stranded DNA that stand for

various possible attempted solutions.

The molecular solution to the directed

Hamiltonian path problem is any double-

stranded DNA molecule containing one

and only one representation of each of the

seven cities, and beginning at ‘start’and

ending with ‘finish’. The solution was found

among all the incorrect possibilities by a

clever series of filtering steps that selected

sequentially: (1) molecules containing

seven and only seven city representations;

(2) molecules containing the start city;

(3) molecules containing the finish city;

(4)molecules containing the second city; and

so on. Unfortunately, the Adleman scheme

is not useful for problems larger than

~30 cities, for which buckets of DNA would

be needed! Also, a problem of this size can be

solved using silicon computers, so it might

seem that there would be no need for such a

DNA computation. However, as is routinely

done in silicon computers, problems of this

type could be divided into millions of

smaller problems. The use of Adleman or

Boolean DNA computation might thus be

extended into a practical domain if micro-

fluidic techniques were used to break up the

problem into more practical sized pieces.

If applied to large problems the Boolean

DNA computing paradigm would also suffer

from the accumulation of mishybridization

errors, even if these occur with small

probability. An error-correcting scheme,

perhaps similar to the codes used in

ordinary computers, is a possibility. Another

approach to DNA computing, suggested by

Platzman in 1998, is to create an inherently

fault tolerant neural network version of

Adleman’s computer. A neural network is a

highly interconnected collection of neurons

talking to each other via stimulating or

inhibiting axon connections. The neurons

can be thought of as little amplifiers that

have one or more inputs and outputs.

A neuron acts as a decision-making device

because its outputs saturate when the sum

of the inputs is greater than or less than

certain threshold values. By appropriate

choice of the weights or strengths of the

connections in a neural network, any

function can be approximated [8]. Neural

networks are useful for classifying,

generalizing and predicting based on a

limited data set, and thus might be helpful

for making diagnoses once the rules have

been established by careful laboratory and

clinical studies [9]. The simplest form of

neural network, shown in Fig. 2, and

known as a perceptron [10,11], consists of

a single input layer of neurons connected

to a single output layer. More general

architectures having hidden layers of

neurons are needed to design networks

with the maximum utility.

DNA neural networks

A neural network can be represented using

certain DNAoligomers to represent neurons

  … 

  … 

Start
A

A

B

B

E

D

C
F

G

G
Green dyeRed dye

G-inB-outB-inA-out

A-out B-out B-outB-in C-in
E-in

(a)

(b)

(c)

(d )

TRENDS in Biotechnology 

( )

Finish

Fig. 1. Adleman’s DNA solution to the directed Hamiltonian path problem. (a) A problem with seven cities and
various one-way streets connecting them. (b) The cities (colored circles) and their one-way streets represented by
various DNA oligomers. (c) Collection of the permitted one-way street connections represented by complementary
DNA oligomers. (d) A valid solution with the correct length (seven cities) and containing the start city represented
by a red dye molecule and the finish city represented by a green dye molecule.
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Fig. 2. A perceptron, an artificial neural network with
no hidden layers. The activity at a collection of input
neurons {I} (i.e. the whole set of object I) is
communicated to a set of output neurons {O} (i.e. the
whole set of object O) via stimulating or inhibiting axon
connections with strengths Wij. The output of a neuron
is proportional to the sum of its inputs with upper and
lower limits beyond which the output saturates.



and connected pairs of DNA oligomers

complementary to two different neuron

DNAoligomers to represent the axons. The

concentrations of the neuron DNAoligomers

represent their states of activity. The

concentrations of the axon DNA oligomers

govern the rate at which input neuron DNA

concentrations lead to the production of an

associated concentration of output neuron

oligomers. The manner by which this is

accomplished is a matter of choice, given the

array of enzymes and reactions provided

both by Nature and man’s ingenuity.

One way to represent a neural network

in DNA is to use axons that are protected

on one end to insure that hybridization

with the input neuron oligomers only

occurs on the desired input end of the axon.

The axons are constructed as shown in

Fig. 3: two oligomers complementary to

the desired input and output neurons are

temporarily connected via a linker oligomer

that attaches itself to sticky ends on the two

oligomers complementary to the neurons.

The two oligomers are subsequently joined

permanently using T4 DNA ligase. The

axon is then protected (prevented from

hybridization with neuron oligomers) on

its output end by exonuclease-free Klenow

fragment DNA polymerase extension of

the 3′ end of the linker oligomer.

To effect the operation of the single-layer

neural network, a collection of input neuron

oligomers is allowed to hybridize with axons

and acted on by exonuclease-free Klenow

fragment DNA polymerase in the suitable

reaction buffer, as indicated in Figure 4.

Output neuron oligomers are released by

the polymerase from those axons that

have been primed on their single-stranded

ends by complementary neuron oligomers.

Experiment

To test this scheme, a set of random 

50% CG neuron oligomers and their

complements 26 bases long was selected

to have a minimal tendency to stick to

themselves forming hairpins or other

entanglements. The neuron DNA

oligomers and their complements are

labeled EP or EM, for positive

(stimulating) and negative (inhibiting)

amplitudes respectively. A linker DNA

oligomer of 24 bases was chosen similarly

to the neuron DNA oligomers. Oligomers

complementary to either the 5′ or 3′ half of

the linker oligomer are attached to the 5′
ends of an input neuron oligomer and the

3′ ends of an output neuron oligomers

respectively for forming an axon using

ligase. Fluorescently-labeled probe

oligomers, consisting of the neuron

oligomers or their complements joined 

at their 5′ ends to a DNA dimer and the

dye TET, are used to effect the

semiquantitative detection of various

oligomers in a solution using gel

electrophoresis. The gels are read by

exciting the dye with 514 nm light and

recording only the TET fluorescence light

using a 530 nm filter and a charged

coupled device (CCD) camera. Contrast in

the CCD images is enhanced (see Fig. 5)

using a mod(n) intensity display.

First, axons were prepared from input

DNA oligomers EM16 and output DNA

oligomers EP13 as indicated in Fig. 5a,

and examined using gel electrophoresis.

The four columns in Fig. 5a are gel lanes

that were each loaded with the same

solution of unprotected axons formed

from the two neuron oligomers EP13 and

EP16, plus a quantity of one of the four

fluorescent probes, TagEP13, TagEM13,

TagEP16 and TagEM16 respectively.

Note that TagEP13 is the probe for EP13,

and therefore contains the single-

stranded oligomer EM13 that is

complementary to EP13. We are testing

for the presence of the two neuron

oligomers that are not supposed to be

present in our unprotected axon as a

control for the next part of the experiment

(Fig. 5b), in which a complementary

oligomer EM13 will be displaced from the

protected axon. The gel lanes display

short fluorescent DNA fragments at the

bottoms of the photos and long ones at the

tops. In Fig. 5a and 5b we see the presence

of free dye molecules and excess probes in

all four lanes. In Fig. 5a only the expected

neuron oligomers EP13 and EP16 are

visible, both as the desired ligated

unprotected axons and as unligated

neuron oligomers. The latter are present

owing to the less-than-perfect efficiency of

the ligase reaction.

The axons were then protected from

hybridizing to any input neuron oligomers

on their single-stranded 5′ ends using

exonuclease-free Klenow fragment DNA

polymerase extension to cause their 5′
ends to become double-stranded. The

complement to the input neuron

single-stranded oligomer was added as a

primer, and the solutions were purified

with a resin to remove all single-stranded

DNA fragments. At this point, nothing but

free probes can be observed in an
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Fig. 4. Single layer DNA neural network represented
by DNA. (a) The activities of the network’s input
neurons are represented by the concentrations of DNA
oligomers Ii. (b) The strength of the axon connection
between an input Ii and an output Oj is represented by
the concentration of axons Wij that have
single-stranded segments complementary to Ii and
double-stranded segments composed of Oj and its
complement. (c) To operate the network, the
collections of input neuron oligomers and axons are
mixed together and exposed to the action of
exonuclease-free Klenow fragment DNA polymerase.
(d) If an axon has been primed by an oligomers Ii, 
it will be extended by the polymerase, thus causing 
the release of the output oligomer Oj.
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Linker strand

Fig. 3. Steps in forming an axon. (a) DNA oligomers complementary to the DNA oligomers representing the desired
input and output neurons are attached to each other using a linker oligomer and T4 DNA ligase. (b) The output end of
the linked oligomers is protected from hybridization to input neuron oligomers, by polymerase extension of the
linker oligomer along the output oligomer.



electrophoresis gel because the fluorescent

probes do not bind to double-stranded

DNA. The single-stranded output neuron

oligomer was then released by the strand

displacement that occurs when

exonuclease-free Klenow fragment DNA

polymerase extended the input neuron

oligomer along the double-stranded portion

of the axon. The output oligomer hybridized

to its complementary probe is clearly

identified as EM13 in Figure 5b. Because

the DNA was not denatured during

processing, there is no way that these

oligomers could have appeared other than

by polymerase extension. This indicates

that the scheme for implementing a

small-scale neural network work is

possible, and I am now working on scaling

up to a problem containing 16 neurons

and of order 256 axons.

The neural network needed to solve

an expression profiling classification

would probably require only a few

thousand different neurons and might be

configured as a one or two layer neural

network. Such a relatively small DNA

neural network would have relatively

rapid cycle times and need only small

quantities of neuron and axon solutions.

The well-known error-tolerance of neural

networks suggests that networks of the

required size should perform well despite

the presence of a background of

undesirable reactions.

It is thus possible that we will be able

to make a simple expression profiling

neural network that could be used as a

routine diagnostic tool, as suggested in

Figure 6. Much work needs to be done

after the hardware solution is perfected

to find a set of appropriate axon

concentrations that will do an acceptable

job of classifying clinical cell samples.

The longer-term prospects include the

possibility that the same technology

could be scaled up to sizes that would

provide massive computing capabilities

not available otherwise.
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c-DNA
input
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Fig. 6. Possibility for an expression profiling kit to assist
in rapid diagnosis. Complementary DNA representative
of the messenger RNA gene activity of a sample of cells
is combined with a DNA neural network solution. After a
suitable interaction time, an indicator on the sample vial
exhibits a color corresponding to the network’s evaluation
of the cell type from a limited set of possibilities.
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Fig. 5. Test of a single node suitable for making a DNA neural network. (a) Axon connecting an input neuron EP16 to
an output neuron EM13. The axon has been tagged successively in the four lanes of the photo by fluorescent dyes
complementary to the four oligomers EP13, EM13, EP16 and EM16. The gel photo shows that the axon is of double length
and composed of neuron oligomers EP13 and EM16. (b) The axon has been made double-stranded on its 5′ end by
polymerase extension and then primed by an input oligomer EP16 so that it is completely double-stranded. The output
neuron oligomer EM13 is released by the further action of polymerase, and is the only oligomer visible in the gel photo.


